Top Stories
Inner Wheel Club of Bombay Airport Honors Prof. Seema Mahajan with Women Achiever Award 2023
This award is a testament to the exceptional efforts made by Prof. Seema Mahajan in preparing the next generation through her tireless work in the education sector

Inner Wheel Club of Bombay Airport, one of the largest women’s voluntary organizations in Inner Wheel Dist. 314, has recognized the exemplary work of Prof. Seema Mahajan, Director of SVKM’s Pravin Dalal School of Entrepreneurship & Family Business Management in the field of education by bestowing her with the prestigious Women Achiever Award for 2023. This award is a testament to the exceptional efforts made by Prof. Seema Mahajan in preparing the next generation through her tireless work in the education sector.
Upon receiving the Women Achiever Award for 2023, Prof. Seema Mahajan, Director, Pravin Dalal School of Entrepreneurship & Family Business Management, NMIMS said, “I am deeply honored to receive this award from Inner Wheel Club of Bombay Airport. Education is the key to building a better future for our children and ensuring their success in life. I am committed to continuing my work in the education sector and providing opportunities to the younger generation to achieve success in life.”
The Inner Wheel Club of Bombay Airport works towards providing community and social service in rural and urban India with special thrust on literacy, medical care, women empowerment, children with special needs and support for senior citizens.
Edu News
Indian School of Development Management creates eligibility portal for Social Stock Exchange with SEBI
Portal inaugurated by Guest-of-Honour and SEBI Chief Madhabi Puri Buch who joined the event online from Mumbai during the convocation ceremony for the fifth batch of its flagship Post Graduate Program in Development Management (PGP-DM)

Indian School of Development Management (ISDM), a pioneering institute committed toward developing and strengthening the domain of Development Management as separate from the tenets of business management, has created a comprehensive eligibility portal for the Social Stock Exchange (SSE) together with SEBI.

The portal has been designed to help non-profit organisations determine their eligibility and requirements to apply for resources from the SSE platform. It was unveiled by the institute during the convocation ceremony for the fifth batch of its flagship post graduate program in Development Management (PGP DM).
SEBI Chief Madhabi Puri Buch was the guest of honour at the event who joined the ceremony online from Mumbai. She inaugurated the SSE eligibility portal after delivering the keynote speech.
Highlighting the significance of the Social Stock Exchange and the eligibility portal in her keynote speech, Madhabi Puri Buch said, “We wish to create a high level of transparency and assured disclosure through the social stock exchange to build trust for those who wish to contribute capital to social causes. It is our hope at SEBI that social investment becomes an integral part of their investment portfolios and becomes accepted as an independent asset class in the markets. This will enable social purpose organisations to have access to capital.”
Congratulating the outgoing batch, she expressed her admiration for ISDM’s growth in its mission to create a cadre of professionals for social purpose organisations in the sector.
Ravi Sreedharan, ISDM Co-founder and President, said, “The work that SEBI and ISDM have done together on the eligibility portal for the social stock exchange is truly nation building. The ground has finally been set for Samaaj, Sarkar and Bazaar (society, administration and markets) to work together and address vital funding needs for social sector requirements.”
He added, “In the seven years since our birth, the organisation has made remarkable and important strides in breaking barriers in its academic programs, its research and knowledge creation and in its models for use and application for social impact. Our students and alumni are the flag bearers of the values, thoughts, creativity and transformation that the organisation was founded to achieve. Our now-sizable alumni are making strides as development managers, leaders, social entrepreneurs, academia and researchers.”
Trisha Varma, Director Global Knowledge Hub said, “The SSE eligibility portal has been designed as part of a project for our centre-of-excellence on social finance. ISDM will continue work to make research, tools and social financing frameworks available to social impact organisations in order to harness their potential and seek appropriate funding and support from the larger industry.”
The fifth batch of the PGP DM program comprised 39 students from across India with diverse backgrounds. The batch achieved 100% placement with more than 200 organisations participating in the placement process with more than 320 roles for the students to consider.
Science & Technology
3D-printed revolving devices can sense how they are moving
A new system enables makers to incorporate sensors into gears and other rotational mechanisms with just one pass in a 3D printer

**Images/video: https://news.mit.edu/2023/3d-printing-revolving-devices-sensors-0316
Written by Adam Zewe, MIT News Office
Integrating sensors into rotational mechanisms could make it possible for engineers to build smart hinges that know when a door has been opened, or gears inside a motor that tell a mechanic how fast they are rotating. MIT engineers have now developed a way to easily integrate sensors into these types of mechanisms, with 3D printing.

Credits:Credit: Courtesy of the researchers. Edited by MIT News
Even though advances in 3D printing enable rapid fabrication of rotational mechanisms, integrating sensors into the designs is still notoriously difficult. Due to the complexity of the rotating parts, sensors are typically embedded manually, after the device has already been produced.
However, manually integrating sensors is no easy task. Embed them inside a device and wires might get tangled in the rotating parts or obstruct their rotations, but mounting external sensors would increase the size of a mechanism and potentially limit its motion.
Instead, the new system the MIT researchers developed enables a maker to 3D print sensors directly into a mechanism’s moving parts using conductive 3D printing filament. This gives devices the ability to sense their angular position, rotation speed, and direction of rotation.
With their system, called MechSense, a maker can manufacture rotational mechanisms with integrated sensors in just one pass using a multi-material 3D printer. These types of printers utilize multiple materials at the same time to fabricate a device.
To streamline the fabrication process, the researchers built a plugin for the computer-aided design software SolidWorks that automatically integrates sensors into a model of the mechanism, which could then be sent directly to the 3D printer for fabrication.
MechSense could enable engineers to rapidly prototype devices with rotating parts, like turbines or motors, while incorporating sensing directly into the designs. It could be especially useful in creating tangible user interfaces for augmented reality environments, where sensing is critical for tracking a user’s movements and interaction with objects.
“A lot of the research that we do in our lab involves taking fabrication methods that factories or specialized institutions create and then making then accessible for people. 3D printing is a tool that a lot of people can afford to have in their homes. So how can we provide the average maker with the tools necessary to develop these types of interactive mechanisms? At the end of the day, this research all revolves around that goal,” says Marwa AlAlawi, a mechanical engineering graduate student and lead author of a paper on MechSense.
AlAlawi’s co-authors include Michael Wessely, a former postdoc in the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) who is now an assistant professor at Aarhus University; and senior author Stefanie Mueller, an associate professor in the MIT departments of Electrical Engineering and Computer Science and Mechanical Engineering, and a member CSAIL; as well as others at MIT and collaborators from Accenture Labs. The research will be presented at the ACM CHI Conference on Human Factors in Computing Systems.
Built-in sensing
To incorporate sensors into a rotational mechanism in a way that would not disrupt the device’s movement, the researchers leveraged capacitive sensing.
A capacitor consists of two plates of conductive material that have an insulating material sandwiched between them. If the overlapping area or distance between the conductive plates is changed, perhaps by rotating the mechanism, a capacitive sensor can detect resulting changes in the electric field between the plates. That information could then be used to calculate speed, for instance.
“In capacitive sensing, you don’t necessarily need to have contact between the two opposing conductive plates to monitor changes in that specific sensor. We took advantage of that for our sensor design,” AlAlawi says.
Rotational mechanisms typically consist of a rotational element located above, below, or next to a stationary element, like a gear spinning on a static shaft above a flat surface. The spinning gear is the rotational element and the flat surface beneath it is the stationary element.
The MechSense sensor includes three patches made from conductive material that are printed into the stationary plate, with each patch separated from its neighbors by nonconductive material. A fourth patch of conductive material, which has the same area as the other three patches, is printed into the rotating plate.
As the device spins, the patch on the rotating plate, called a floating capacitor, overlaps each of the patches on the stationary plate in turn. As the overlap between the rotating patch and each stationary patch changes (from completely covered, to half covered, to not covered at all), each patch individually detects the resulting change in capacitance.
The floating capacitor is not connected to any circuitry, so wires won’t get tangled with rotating components.
Rather, the stationary patches are wired to electronics that use software the researchers developed to convert raw sensor data into estimations of angular position, direction of rotation, and rotation speed.
Enabling rapid prototyping
To simplify the sensor integration process for a user, the researchers built a SolidWorks extension. A maker specifies the rotating and stationary parts of their mechanism, as well as the center of rotation, and then the system automatically adds sensor patches to the model.
“It doesn’t change the design at all. It just replaces part of the device with a different material, in this case conductive material,” AlAlawi says.
The researchers used their system to prototype several devices, including a smart desk lamp that changes the color and brightness of its light depending on how the user rotates the bottom or middle of the lamp. They also produced a planetary gearbox, like those that are used in robotic arms, and a wheel that measures distance as it rolls across a surface.
As they prototyped, the team also conducted technical experiments to fine-tune their sensor design. They found that, as they reduced the size of the patches, the amount of error in the sensor data increased.
“In an effort to generate electronic devices with very little e-waste, we want devices with smaller footprints that can still perform well. If we take our same approach and perhaps use a different material or manufacturing process, I think we can scale down while accumulating less error using the same geometry,” she says.
In addition to testing different materials, AlAlawi and her collaborators plan to explore how they could increase the robustness of their sensor design to external noise, and also develop printable sensors for other types of moving mechanisms.
This research was funded, in part, by Accenture Labs.
Science & Technology
Where the sidewalk ends
Most cities don’t map their own pedestrian networks. Now, researchers have built the first open-source tool to let planners do just that

Written by Peter Dizikes, MIT News Office
It’s easier than ever to view maps of any place you’d like to go — by car, that is. By foot is another matter. Most cities and towns in the U.S. do not have sidewalk maps, and pedestrians are usually left to fend for themselves: Can you walk from your hotel to the restaurants on the other side of the highway? Is there a shortcut from downtown to the sports arena? And how do you get to that bus stop, anyway?
Now MIT researchers, along with colleagues from multiple other universities, have developed an open-source tool that uses aerial imagery and image-recognition to create complete maps of sidewalks and crosswalks. The tool can help planners, policymakers, and urbanists who want to expand pedestrian infrastructure.
“In the urban planning and urban policy fields, this is a huge gap,” says Andres Sevtsuk, an associate professor at MIT and a co-author of a new paper detailing the tool’s capabilities. “Most U.S. city governments know very little about their sidewalk networks. There is no data on it. The private sector hasn’t taken on the task of mapping it. It seemed like a really important technology to develop, especially in an open-source way that can be used by other places.”
The tool, called TILE2NET, has been developed using a few U.S. areas as initial sources of data, but it can be refined and adapted for use anywhere.
“We thought we needed a method that can be scalable and used in different cities,” says Maryam Hosseini, a postdoc in MIT’s City Form Lab in the Department of Urban Studies and Planning (DUSP), whose research has focused extensively on the development of the tool.
The paper, “Mapping the Walk: A Scalable Computer Vision Approach for Generating Sidewalk Network Datasets from Aerial Imagery,” appears online in the journal Computers, Environment and Urban Systems. The authors are Hosseini; Sevtsuk, who is the Charles and Ann Spaulding Career Development Associate Professor of Urban Science and Planning in DUSP and head of MIT’s City Form Lab; Fabio Miranda, an assistant professor of computer science at the University of Illinois at Chicago; Roberto M. Cesar, a professor of computer science at the University of Sao Paulo; and Claudio T. Silva, Institute Professor of Computer Science and Engineering at New York University (NYU) Tandon School of Engineering, and professor of data science at the NYU Center for Data Science.
Significant research for the project was conducted at NYU when Hosseini was a student there, working with Silva as a co-advisor.
There are multiple ways to attempt to map sidewalks and other pedestrian pathways in cities and towns. Planners could make maps manually, which is accurate but time-consuming; or they could use roads and make assumptions about the extent of sidewalks, which would reduce accuracy; or they could try tracking pedestrians, which probably would be limited in showing the full reach of walking networks.
Instead, the research team used computerized image-recognition techniques to build a tool that will visually recognize sidewalks, crosswalks, and footpaths. To do that, the researchers first used 20,000 aerial images from Boston, Cambridge, New York City, and Washington — places where comprehensive pedestrian maps already existed. By training the image-recognition model on such clearly defined objects and using portions of those cities as a starting point, they were able to see how well TILE2NET would work elsewhere in those cities.
Ultimately the tool worked well, recognizing 90 percent or more of all sidewalks and crosswalks in Boston and Cambridge, for instance. Having been trained visually on those cities, the tool can be applied to other metro areas; people elsewhere can now plug their aerial imagery into TILE2NET as well.
“We wanted to make it easier for cities in different parts of the world to do such a thing without needing to do the heavy lifting of training [the tool],” says Hosseini. “Collaboratively we will make it better and better, hopefully, as we go along.”
The need for such a tool is vast, emphasizes Sevtsuk, whose research centers on pedestrian and nonmotorized movement in cities, and who has developed multiple kinds of pedestrian-mapping tools in his career. Most cities have wildly incomplete networks of sidewalks and paths for pedestrians, he notes. And yet it is hard to expand those networks efficiently without mapping them.
“Imagine that we had the same gaps in car networks that pedestrians have in their networks,” Sevtsuk says. “You would drive to an intersection and then the road just ends. Or you can’t take a right turn since there is no road. That’s what [pedestrians] are constantly up against, and we don’t realize how important continuity is for [pedestrian] networks.”
In the still larger picture, Sevtsuk observes, the continuation of climate change means that cities will have to expand their infrastructure for pedestrians and cyclists, among other measures; transportation remains a huge source of carbon dioxide emissions.
“When cities talk about cutting carbon emissions, there’s no other way to make a big dent than to address transportation,” Sevtsuk says. “The whole world of urban data for public transit and pedestrians and bicycles is really far behind [vehicle data] in quality. Analyzing how cities can be operational without a car requires this kind of data.”
On the bright side, Sevtsuk suggests, adding pedestrian and bike infrastructure “is being done more aggressively than in many decades in the past. In the 20th century, it was the other way around, we would take away sidewalks to make space for vehicular roads. We’re now seeing the opposite trend. To make best use of pedestrian infrastructure, it’s important that cities have the network data about it. Now you can truly tell how somebody can get to a bus stop.”
-
Business & Economy10 months ago
NSE Academy Limited collaborates with HDFC Mutual Fund for financial awareness program
-
Business & Economy8 months ago
Using artificial intelligence to control digital manufacturing
-
Edu News10 months ago
Technique protects privacy when making online recommendations
-
Edu News9 months ago
Astronomers discover a multiplanet system nearby
-
Edu News10 months ago
Search reveals eight new sources of black hole echoes
-
Edu News9 months ago
Stronger security for smart devices
-
Edu News8 months ago
Jasudben ML School celebrated its first edition of Pride Month
-
Edu News8 months ago
Russian Edu Fair Held